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We predict the existence of gap solitons in a nonlinear, quadratic Fabry-Pérot negative index cavity. A
peculiarity of a single negative index layer is that if magnetic and electric plasma frequencies are different it
forms a photonic band structure similar to that of a multilayer stack composed of ordinary, positive index
materials. This similarity also results in comparable field localization and enhancement properties that under
appropriate conditions may be used to either dynamically shift the band edge, or for efficient energy conver-
sion. We thus report that an intense, fundamental pump pulse is able to shift the band edge of a negative index
cavity, and make it possible for a weak second harmonic pulse initially tuned inside the gap to be transmitted,
giving rise to a gap soliton. The process is due to cascading, a well-known phenomenon that occurs far from
phase matching conditions that limits energy conversion rates, it resembles a nonlinear third-order process, and
causes pulse compression due to self-phase modulation. The symmetry of the equations of motion under the
action of either an electric or a magnetic nonlinearity suggests that both nonlinear polarization and magneti-
zation, or a combination of both, can lead to solitonlike pulses. More specifically, the antisymmetric localiza-
tion properties of the electric and magnetic fields cause a nonlinear polarization to generate a dark soliton,
while a nonlinear magnetization spawns a bright soliton.
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INTRODUCTION

The term “gap soliton” was coined to describe the shape
that the electric field assumes when an incident, continuous
wave beam is tuned inside the photonic band gap of a one-
dimensional, periodic structure of finite length, so that a third
order ���3�� nonlinearity causes the beam to be transmitted
�1�. The physics of how such a state may be excited is ex-
ceptionally simple: A nonlinear change in the intensity-
dependent refractive index of at least one of the constituent
materials causes a shift of the photonic band edge, thus plac-
ing the incident beam within the pass band, and allowing its
transmission. An excellent review of third order gap solitons
may be found in Ref. �2�. Transverse, diffractive spatial gap
solitons have been predicted in quadratic ���2�� materials in
the context of multilayer structures �3�, and are generally due
to cascading, a process that occurs when pump and second
harmonic beams interact far from phase matching conditions.
Temporal, two-color gap solitons were also predicted in qua-
dratic, shallow-depth Bragg gratings �4�, and typically rely
on doubly resonant conditions, and strong coupling between
the fundamental �FF� and second harmonic �SH� beams. The
recent interest in negative index materials �NIMs� �5� has led
to predictions of ��3� gap solitons �6� near the band edge of
the intrinsic gap of a Fabry-Pérot, NIM cavity �7� in the form
of a single slab of material immersed in vacuum. Unlike the
zero average-index gap �8�, formation of the intrinsic band
structure does not require the presence of a positive index
material �PIM�, and it is a peculiarity of the frequency range
where a NIM has dielectric susceptibility and magnetic per-
meability of opposite signs �7�. The peculiarities of the band
structure extend to the field localization properties, which

appear to be unique even for a single slab of material �6,7�.
In this paper we report second harmonic gap solitons in a

��2�-active NIM cavity. For a positive nonlinear coefficient,
one may excite either a dark or a bright soliton, depending
on whether an electric or magnetic nonlinearity is present,
and on the ratio of the magnetic and electric plasma frequen-
cies. As is well known in the case of ordinary PIMs, the FF
and SH fields do not exchange energy if the relative phase
difference between the incident fields is chosen so that the
interaction proceeds far from the phase matching condition,
thus triggering cascading, and the interaction resembles a
��3� process. In a NIM cavity, the formation of a gap soliton
at the second harmonic frequency follows a similar pattern,
with some distinguishing characteristics. An intense, rela-
tively narrow-bandwidth FF pulse is tuned to the first reso-
nance peak �Fig. 1�, on the low frequency side of the intrin-
sic band gap, where the index of refraction is negative, so
that it resolves the resonance and it is mostly transmitted.
This means that incident pump fields can become highly lo-
calized inside the NIM cavity, but the pulses can still propa-
gate through the medium with minimal distortion and/or
scattering losses and with near unit transmittance, as has
been demonstrated near the band edge of a one-dimensional
photonic band gap structure �9�. Although we choose the FF
to be narrow-band and resonant, we note that these are not
necessary conditions for the generation of solitonlike pulses,
although this combination helps to lower the nonlinear
thresholds �10,11�. A much weaker SH pulse is then tuned
inside the gap �Fig. 1�, where the index of refraction is near
zero �n�10−3�, in proximity of the high frequency band
edge, so that in the absence of nonlinear coupling it is mostly
reflected. In general, the SH pulse tends to gain energy.
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However, by adjusting the relative input phase difference
between the fields a condition exists such that the SH pulse
experiences no net gain, causing instead a dynamic shift of
the band edge. As a result, the SH pulse is effectively pushed
out of the band gap, it is spatially and temporally compressed
by self-phase modulation, and almost completely transmit-
ted: Transmittance switches from 4% to about 90%.

PROPAGATION MODEL

To model the dynamics of interacting, short FF and SH
pulses in a dispersive material one can choose from a number
of available approaches. For simplicity, we assume one-
dimensional nonlinear pulse propagation, and follow the de-
velopment of optical harmonic generation found in Boyd
�12�. One may assume that the material contains a fine scale
structure that gives rise to a second order nonlinearity, which
is then uniformly distributed inside the material. Then, if the
fields are linearly polarized, they may be expressed as a su-
perposition of fundamental and higher harmonic frequencies
as follows �12�:

E = x̂�
�=1

�

�E���z,t� + c.c.� = x̂�
�=1

�

�E���z,t�ei��k0z−�0t� + c.c.� ,

H = ŷ�
�=1

�

�H���z,t� + c.c.� = ŷ�
�=1

�

�H���z,t�ei��k0z−�0t� + c.c.� ,

�1�

where � is a positive integer that denotes the �th harmonic.
In Eqs. �1�, each harmonic is expressed as the product of a
generic envelope function and oscillating factors that contain
carrier wave vector and frequency. k0=�0 /c is the free space

wave vector, and �0 is the corresponding carrier pump fre-
quency. The pump pulses are assumed to be initially located
in free space, and no assumptions are made about the enve-
lope functions. The nonlinear polarization and magnetization
that evolve inside the medium may also be described in a
manner similar to Eqs. �1�, each in terms of a generic enve-
lope function and carrier wave vector and frequency as fol-
lows:

PNL = x̂�
�=1

�

�P���z,t�ei��k0z−�0t� + c.c.� ,

MNL = ŷ�
�=1

�

�M���z,t�ei��k0z−�0t� + c.c.� . �2�

For the kind of simplified second order nonlinear process we
are considering, it suffices to assume nonlinear polarization
and magnetization of the type PNL=�P

�2�E2, and MNL

=�M
�2�H2, where �P

�2� and �M
�2� are the respective electric and

magnetic nonlinear coefficients, which in turn are also al-
lowed to be arbitrary functions of position, i.e., they may be
discontinuous along the longitudinal coordinate. The nonlin-
ear polarization and magnetization in Eqs. �2� can then be
easily expanded. For example, retaining terms up to the
fourth harmonic frequency, the corresponding nonlinear po-
larization terms become �12�

P��z,t� = 2�P
�2��E�

* E2� + E2�
* E3� + E3�

* E4� + ¯ � ,

P2��z,t� = �P
�2��E�

2 + 2E�
* E3� + 2E2�

* E4� + ¯ � ,

P3��z,t� = 2�P
�2��E�E2� + E�

* E4� + ¯ � ,

P4��z,t� = �P
�2��E2�

2 + 2E�E3� + ¯ � . �3�

The nonlinear magnetization terms have a similar form. Al-
though we have omitted fifth and higher harmonics from the
expansion, they may be found without difficulty.

The model that we adopt takes linear, background mate-
rial dispersion �including absorption� into account. Follow-
ing Eqs. �2�, the displacement field D may be similarly de-
fined as follows:

D = x̂�
t=1

�

�D���z,t� + c.c.� = x̂�
�=1

�

�D���z,t�ei��k0z−�0t� + c.c.� ,

�4�

which may be related to the electric field by expanding the
complex dielectric function as a Taylor series in the usual
way:

��z,�� = ��z,�0� + � ���z,��
��

�
�0

�� − �0�

+
1

2
� �2��z,��

��2 �
�0

�� − �0�2 + ¯

= a�z,�0� + b�z,�0�� + c�z,�0��2 + ¯ . �5�

For an isotropic background medium, a simple constitutive
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FIG. 1. Transmittance �left axis� and real part of the index of
refraction �right axis� for the Drude model described in the text,

with �̃M =1, �̃E=0.5205, and �̃=10−4. The FF pulse is tuned at �
=0.5, which coincides with the first band edge resonance on the low
frequency side. The SH pulse is tuned to �=1, which falls inside
the gap.
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relation may be written to relate each harmonic to its relative
displacement field. It is then easy to show that, in general
�13–18�,

�D���z,t�
�t

= �− i�0�����0�E�� + 	 ����������
��



�0

�E��

�t

+
i

2
	 �2���������

��2 

�0

�2E��

�t2 + ¯ �e−i��0t.

�6�

In addition to directly entering Maxwell’s equations, Eq. �6�
is also important for the purpose of determining electromag-
netic energy density and losses when material dispersion is
present �13�, and when pulses are especially short. Therefore,
assuming a nonzero ��2�, the scaled Maxwell’s equations for
the �th harmonic take the following form �14–18�:

���̃

�E��̃

��
+ i

���̃�

4�

�2E��̃

��2 −
���̃�

24�2

�3E��̃

��3 + ¯

= i�	����̃,
E��̃ − H��̃� −
�H��̃

�


+ 4��i�	P��̃ −
�P��̃

��
 ,

���̃

�H��̃

��
+ i

���̃�

4�

�2H��̃

��2 −
���̃�

24�2

�3H��̃

��3 + ¯

= i�	����̃,
H��̃ − E��̃� −
�E��̃

�


+ 4��i�	M��̃ −
�M��̃

��
 , �7�

where ���̃= �(���̃���̃�
�� /��̃)��0
, ���̃= �(���̃���̃�
�� /��̃)��0

,
and the prime symbol denotes a derivative with respect to
frequency; together with ���̃ and ���̃, ���̃ and ���̃ are also
complex functions of frequency and of the spatial coordinate.
We have chosen 0=1 �m as the reference wavelength, and
have adopted the following scaling: 
=z /0 is the scaled
longitudinal coordinate; �=ct /0 is the time in units of the
optical cycle; 	=2��̃ is the scaled wave vector; �̃=� /�0 is
the scaled frequency, and �0=2�c /0, where c is the speed
of light in vacuum. The cavity is assumed to be two microns
in length, and its transmission function is shown is Fig. 1.

At this point, for pedagogical purposes it is worthwhile to
digress and discuss some of the details regarding the method
of solution, the assumptions and approximations that are
made to solve Eqs. �7�, and to give additional related back-
ground information abut the model. In deriving Eqs. �7�, we
have assumed that the background medium is isotropic, and
that pulses do not diffract. The latter restriction simply
means that transverse beam width remains many wave-
lengths wide at all times. This limitation can easily be lifted
by allowing the fields to vary along the transverse coordinate
�16�. More importantly, our description of the fields as the
product of an envelope function and a carrier wave vector

and frequency is a mere matter of convenience, primarily
because it allows one to follow the detailed dynamics of each
harmonic, and to explore the impact of each term on the
dynamics. However, it should be noted that although this
field decomposition constitutes the foundation of the slowly
varying envelope approximation, it should not per se be mis-
construed as an approximation, because Eqs. �7� do not con-
tain any restrictions on the envelope functions. While in prin-
ciple the number of linear dispersion terms �temporal
derivatives of the fields� and/or the number of harmonics one
retains to describe the system may be arbitrarily large, in
practice one must work with a finite number of them. Of
course, truncating the number of time derivatives or the
number of harmonics is equivalent to making some kind of
approximation.

In the system that we consider, which entails input FF and
SH pulses, and a medium only a few wavelengths thick, it is
more than sufficient to neglect third and higher harmonics,
and to neglect second and higher temporal derivatives that
arise from linear material dispersion �10,11,14–18�. We can
be more specific and quantify each of these aspects sepa-
rately. For instance, retention of third and fourth harmonic
fields in Eqs. �7� leads to third and fourth harmonic conver-
sion rates of �10−7 and �10−9, respectively. Therefore, it is
clear that the calculations may be simplified by truncating
nonlinear polarization and magnetization terms at the second
harmonic fields without appreciably impacting the dynamics.
In terms of linear material dispersion, propagation distances
that typically do not exceed a few tens of wavelengths also
make it possible to neglect second and higher order temporal
derivatives, without the need to perform a slowly varying
envelope approximation in time �10,11,19�. That is to say, it
can easily be demonstrated that if the medium is only a few
tens of wavelengths thick, as is always the case in nano- and
micron-sized structures, the dielectric constant of Eq. �5� can
be accurately represented by the first two leading terms, even
if a pulse were only a few optical cycles in duration. Of
course, the truncation of Eq. �5� at the second term becomes
a material characterization, not an approximation imposed on
the envelope function.

These notions have been theoretically analyzed in depth
and verified in the case of ultrashort pulse propagation in a
number of scenarios that comprise real materials, including
metallodielectric, multilayer stacks �16�, and negative index
materials �14,16–18�. Some practical examples should help
clarify the nature of this approximation. In the case of a
typical metallodielectric nanostructure composed of noble
metals and dispersive dielectric materials such as Si3N4 or
GaAs, for example, in the visible range one typically finds

that ���Ė�� / ����� Ë�� /4���40 for a two-optical cycle pulse
�17�, with even larger ratios for higher harmonics. As another
example, in a negative index material second order disper-
sion lengths may easily approach several hundred wave-
lengths even for pulses only a few optical cycles in duration
�20�. Therefore, under most circumstances of interest that
involve pulse propagation in relatively thin media, Eqs. �7�
may safely and accurately be recast as follows �18�:
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���̃

�E��̃

��
� i�	����̃,
E��̃ − H��̃� −

�H��̃

�


+ 4��i�	P��̃ −
�P��̃

��
 ,

���̃

�H��̃

��
� i�	����̃,
H��̃ − E��̃� −

�E��̃

�


+ 4��i�	M��̃ −
�M��̃

��
 . �8�

In summary, in addition to the assumptions that the back-
ground medium is isotropic and diffraction is neglected, the
final Eqs. �8� for the �th harmonic contain the following
simplifications: �i� Second and higher-order, linear material
dispersion terms are neglected; �ii� third and higher harmon-
ics are also neglected. As written, Eqs. �8� provide an accu-
rate physical picture of the dynamics, including boundary
conditions and all orders of reflections, even for pulses that
are just a few wave cycles in duration.

To make sure that the approximations and assumptions
discussed in the previous paragraphs are indeed valid, we
also integrated Maxwell’s equations using a finite difference,
time domain algorithm similar to the one discussed in Ref.
�21�. We then compared the solutions of Eqs. �8� to the so-
lutions of the following set of equations �22�:

�Ex

�t
= −

1

�0
	 �Hy

�z
+ Jx
 − �e

�2��Ex
2

�t
,

�Jx

�t
+ �eJx = �0�e

2Ex,

�Ey

�t
= −

1

�0
	 �Ex

�z
+ Ky
 − �m

�2��Hy
2

�t
,

�Ky

�t
+ �mKy = �0�m

2 Hy .

�9�

In Eq. �9�, Jx and Ky are the electric and magnetic current
densities, respectively, and �e,m are the corresponding damp-
ing coefficients. The integration of Eqs. �8� and �9� are car-
ried out for pulses whose durations varied from a few optical
cycles up to several picoseconds, with indistinguishable re-
sults in all cases investigated. In addition to having more
control over each term, Maxwell’s Eqs. �8� are written in a
form that allows the use of the classic fast Fourier transform,
beam propagation method �23�, appropriately modified to in-
clude all orders of reflections and feedback in the time do-
main �19�. We use a spectral method primarily because it
involves multiplication of linear operators; it is uncondition-
ally stable, with no known issues relating to phase or ampli-
tude errors, and thus not prone to the generation of any nu-
merical artifacts; and it can easily be extended to the
multidimensional domain almost effortlessly �16,17�.

�„2… GAP SOLITONS

The intrinsic band gap, the relative tuning of the FF and
SH fields, and the index of refraction are depicted in Fig. 1,
given a Drude model with the following characteristics:

���̃�=1− �̃E
2 / ��̃2+ i�̃�̃�, ���̃�=1− �̃M

2 / ��̃2+ i�̃�̃�, where

�̃E=�E /�0 and �̃M =�M /�0 are the scaled electric and mag-

netic plasma frequencies, respectively, and �̃ is the scaled
damping coefficient. As a representative example, we choose

�̃M =1, �̃E=0.5205, and �̃=10−4. Therefore, the magnetic
plasma frequency coincides with our reference wavelength.
Although it is never explicitly invoked in the integrations of
Maxwell’s equations, the index of refraction may be re-
trieved as usual, i.e., n��̃�= ±����̃����̃�, and the negative
root is chosen when both � and � are simultaneously nega-

tive �5�. Our choice of �̃ corresponds to an absorption length
of approximately 500 microns for the pump, and ten times
larger for the SH pulse, so that neither are appreciably at-
tenuated, as the transmittance curve of Fig. 1 shows. How-
ever, our calculations suggest that the soliton does not loose
its coherence with the introduction of more significant ab-
sorption, whose presence tends to simply raise the nonlinear

thresholds. For example, taking �̃=10−3, which corresponds
to an absorption length of �50 �m, causes the transmittance
of the FF to drop to �77%. Our calculations show that this
loss may be compensated by a �30% increase in the peak
intensity of the FF pulse. In sum, the resulting dynamics is
relatively stable against tuning with respect to the band edge,
and the introduction of absorption.

Unlike the damping coefficient, �̃M and �̃E contain more
subtleties, primarily because their relative magnitudes deter-
mine how the fields will become localized �7�. We note that
experimentally, �̃M and �̃E may be set by properly engineer-
ing the size of the elemental, split-ring resonator circuit �24�,
or by properly managing the geometry of the various com-
ponents �25�. Then, our initial choice of smaller electric
plasma frequency causes the electric field to become highly
localized �a single maximum� at the low frequency band
edge, and antilocalized �a single minimum� at the high fre-
quency band edge, near the second harmonic frequency. Ex-
changing the values of �̃M and �̃E causes the electric and
magnetic fields to trade roles, as an analysis of Eqs. �7� or �8�
suggests. Consequently, the nonlinear polarization generates
antilocalized, dark gap solitons when �̃E��̃M, and a nonlin-
ear magnetization induces localized, bright gap solitons if the
situation is reversed, namely when �̃M ��̃E. In Fig. 2 we
show the antilocalized and localized states that respectively
correspond to the excitation of dark and bright solitons, for a
SH frequency tuned near the high frequency band edge reso-
nance. In Fig. 3 we depict the energy contained in the SH
pulse as a function of the relative input phase difference
between the two incident pulses, normalized in units of the
incident, SH energy. When ���10.5°, the energy exchanged
between the fields amounts to less than one part in a thou-
sand. The temporal dynamics of the integrated SH energy is
shown in Fig. 4. Each point on the curves of Fig. 3 was
obtained using incident pulses approximately 1.5 ps in dura-
tion, or about 200 optical cycles at the reference wavelength
of 1 �m; the intensity of the FF ��100 MW/cm2� is ap-
proximately 2�105 greater than the SH peak intensity, so
that the FF field propagates undisturbed; and �P

�2��8 pm/V
and �M

�2�=0. In Fig. 5 we show incident and scattered SH
pulse intensities, normalized to incident peak intensity. The
figure reveals that in addition to being mostly transmitted,
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the pulse is compressed by �30%. One should contrast these
results with linear behavior, i.e., Fig. 1, where we obtain
�4% transmission. The group velocity of the transmitted
pulse is estimated at �c /18. All these aspects of the dynam-
ics, i.e., high transmittance, pulse compression, and the sig-
nificant reduction of group velocity, are fully consistent with
solitonlike behavior near the photonic band edge, as ob-
served experimentally in the case of a soliton that forms and
propagates near the band edge of a fiber Bragg grating �26�.
In Ref. �26�, a 60 ps �spatial extension �20 millimeters� was
narrowed by nearly 50% as a result self-phase modulation
that occurred near the band edge of a nonlinear Bragg grating
55 millimeters in length. The length of the grating was cho-
sen to allow nonlinear effects to develop in an environment

having shallow linear index modulation ��n�10−4�. In our
case, just as it occurs in photonic band gap structures of
finite length having deep gratings, typical nonlinear lengths
are just a few microns thanks to the much larger degree of
field confinement and density of modes compared to shallow
gratings �27�. However, the dynamics follows similar pat-
terns in both cases.

CONCLUSIONS

The dynamics that we have described depend on a num-
ber of factors. For instance, the curves of Fig. 3 are sensitive
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not only to initial relative phase difference, but also to peak
pulse intensities. Because of this sensitivity, pulse duration is
also important, as pulse bandwidth determines the degree of
localization light achieves inside the etalon. In our analysis
we have used narrow-bandwidth pulses that resolve well the
band edge resonance, and lead to maximum field localization
inside the cavity. Thus the kind of gap soliton that we report
persists well into the subpicosecond regime, and as we have
seen, it is resistant to absorption and tuning with respect to
the band edge, albeit with relatively higher nonlinear thresh-
olds.

In summary, we report SH bright and dark gap solitons in
a relatively high-Q, 2 �m thick, nonlinearly Fabry-Pérot
cavity. The relative phase difference between the incident
fields is chosen to induce cascading processes and a dynamic
shift of the intrinsic band edge that causes pulse compression
and gap soliton formation. The soliton is relatively impervi-

ous to the introduction of absorption, tuning with respect to
the band edge, and the reduction of pulse width. These find-
ings are relevant in the optical regime, as negative index
materials are actually being fabricated in the near IR region
�25�, with good prospects for devices in the visible part of
the spectrum. We thus hope that our results, which take into
account effects of finite size and material absorption, will
further stimulate research in this direction. Finally, we note
that gap solitons at the fundamental frequency may also be
created using a negative nonlinear coefficient, and by revers-
ing the roles and intensities of the SH and FF pulses.
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